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Abstract--An experimental and theoretical investigation of the effect of air rising between two opposed 
waterfalls is presented. It is found experimentally that as the air flow is increased, the waterfalls are drawn 
more closely together until a critical air flow rate is reached at which the waterfalls collapse together. A 
theoretical analysis of this phenomenon is presented and the collapse condition is shown to be analogous to 
the choked flow of air through a nozzle the cross-sectional area of which is strongly pressure dependent. 
This dependency results in a very low effective "sonic" velocity and "choked" flow and the theoretical 
predictions are in reasonable agreement with the experiment results. The relevance of this work to the 
PWR refill problem is discussed. 

1. INTRODUCTION 
This paper is concerned with the upward flow of air between two waterfalls with attention being 
focussed on (i) predicting the air flow condition at which the two waterfalls just come together 
(ii) describing the waterfall trajectories. The problem is essentially one of choked flow and can 
be compared with the adiabatic flow of air through a nozzle with flexible walls, the shape of the 
nozzle being dictated by the air flow. As such it is a two phase flow problem of particular 
interest. 

The study arose from observations made during experimental work, concerning safety 
aspects of pressurised water reactors, being carried out for the U.K. Nuclear Installations 
Inspectorate. The experiments related to the effectiveness with which the emergency core 
cooling system water penetrated to the lower plenum during the refill stage of a loss of coolant 
accident (Rooney et al. 1977) and involved air (or steam) rising up a simulated downcomer 
annulus test section against the falling water. Three different test sections were used to 
represent different simulations of a downcomer annulus, progressing from the simple 
developed rectangular flow section indicated in figure 1 (phase 1 tests) to a more realistically 
1/10 scale model of a PWR cylindrical annulus. Interest here is centred on the phase 1 test 
section, which has a tangential side entry for the water, with air as the upflowing fluid to 
eliminate condensation effects. 

During these tests, when the water was introduced through the side entries it flowed down 
through the test section in the form of twin waterfalls, as indicated in figure 1. It was found 
that, for any particular inlet water flowrate, varying the air flowrate altered the water 
trajectories and eventually produced a condition at which the waterfalls were pulled together, 
this being the prelude to liquid hold-upt by the air and consequent bypassing of the inlet water 
to an outlet pipe. This paper presents a theoretical analysis for the air rising between the 
opposing waterfalls and compares predictions with experimental results. 

2. EXPERIMENTAL WORK 

A line diagram of the general apparatus and instrumentation points is shown in figure 2. 
Referring to this, in conjunction with figure 1, air was passed into the lower plenum tank, up 
through the test section (made from transparent polycarbonate) and then through the outlet 
pipe. The depth (d) of the test section was 25.4 mm, the breadth (b) 690 mm and the outlet pipe 

tVarious other terms are commonly used to describe this condition, such as bypass, bridging, flooding or entrainment. 
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Figure 2. Line diagram of test rig showing instrumentation points. 

diameter (do) 76 mm. A polycarbonate window was fitted to the lower tank so that flow 
behaviour could be observed there as well as in the test section. 

The apparatus was used in an extensive experimental programme with steam-water and 
air-water interactions but only water-first tests with air are of relevance here. In a water-first 
test, a steady flow of water was introduced into the test section and then the air flow was 
increased in steps until water hold-up occurred, i.e. the water was bypassed from the inlets 
straight to the outlet without penetration to the lower plenum. 

A series of such tests were carried out with the inlet water flow rate Mw varied in steps up 
to a maximum of 4.6 kg/s. Typical plots of the bypassed (or entrained) water flow rate M,, vs 
the upward air flow rate Mo are shown in figure 3. Four particular conditions which were 
encountered during any test are marked as positions a, b, c and d on figure 3, these being 
related to particular flow patterns within the test section. A more detailed representation of 
these flow patterns is given in figure 4 and can be described as follows. As the 
air rose between the two waterfalls, (a) the suction produced caused the two jets to come 
together (b) forming a barrier to the upward flow of air. It was then observed that the two 
waterfalls opened at the centre plane of the test section (see side views on figure 4) to form a 
passage for the upward rise of air moving against the downward film flow of water. A further 
increase in air flow caused the bridging of the two waterfalls to occur further up the test section 
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until ultimately the "bridge" reached the outlet hole (c) where water bypass started. A further 
increase in air flow increased the water entrainment or bypass effect until the waterfalls lost 
their identity and the air-water combination became a turbulent two-phase mixture in the test 
section (d) with none of the inlet water penetrating to the lower plenum. In this paper attention 
is centred on predicting condition (b) and on defining the waterfall trajectories. 

Waterfall trajectories were measured using a cathetometer and telescope and typical results 
are shown in figure 5. The conditions under which the waterfalls were observed to come 
together at the bottom of the test section (i.e. condition b) are plotted in figure 6 in the form of 
air mass flow rate vs total water mass flow rate Mw. The curve is drawn as rising from the 
origin, although experimental data were not obtained at very low values of Mw; a theoretical 
justification for this is given later. Figure 6 does indicate a maximum value of M, as M, 
increases followed by a drop to zero as M~ is further increased. This final condition is due to 
the horizontal velocity component of the inlet water being sufficiently large as to cause the 
waterfalls to meet even with zero air flow. 

3. THEORY 
3.1 The trajectories of the water[all 

A simple theory for the trajectories of the waterfalls is presented here in which the drag of 
the water on the flat surfaces of the test section is neglected and the jet is assumed to be 
projected horizontally with a uniform initial velocity ui and pressure p. Consider an element of 
the water jet of length ds and thickness kw at point (x, z) and with velocity components u (in the 
x direction) and w (in the z direction) as shown in figure 7. Thus, if Ap is the pressure 
difference across the element ds, the equations of motion for the element of water of density pw 
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and local  thickness  hw are, 

du ( ap w 
d-7 = \p .hw / (w 2 + u2) It2 

N o w  from continuity  

[1] 

[2] 

hw~=hwiui [3] 



134 H.C. SIMPSON et al. 

where t~ = (u2+ W2) 1/2 is the absolute velocity of the water element and h,. and u~ are the 
thickness and velocity of the waterfall at the test section entry. It is then possible to solve 
[I]-[3] to give the velocities u, w and t7 by 

= (2gz + ui2) t/2 

u = u~ + Ap dz 

I z dz)2]t/2. w ° 

[4] 

[5] 

[6] 

Noting that the position (x, z) of the water element at any time t is given by the differential 
equation, 

dx  u 

dz w [7] 

the equation of the water trajectory is obtained as, 

z dz X: o[ _l],,2. 
11+ 2 pwnwiUi 

[8] 

This can be made dimensionless by defining the variables X and Z which are proportional to 
the reciprocal of Froude numbers and a dimensionless pressure difference Ap as, 

2gx; Z=2.~.g2z; A P =  Ap [9] 
X = u~i ui 2gpwh~i 

giving, 

X = f o  z dZ 

[101 
1 + AP dZ j  2 -  

This is the general equation for the trajectory of each waterfall subjected to a gravitational 
force and a pressure difference which can vary from point to point along the trajectory. When 
Ap -- O, [10] reduces to the familiar parabolic form, 

X = 2 Z  1/2. [11] 

No allowance has been made so far for the effect that, just before the end of the water inlet 
pipe (i.e. the brink), the vertical velocity profile (and the water height) is non-uniform because 
the pressure of the water at the bottom of the inlet pipe has to decrease from (Pa + gpwhwi) to 
Pa, the atmospheric pressure. This is a complex problem and an approximate solution is 
described in Appendix 1, where it is shown that the effective mean inlet velocity u; and Froude 
number Frw, are enhanced by the mean hydrostatic head at the inlet pipe to give 

[ Mwl21[1 1 1 
ui = k Lp,,hw d j + ~ J 

[12a] 
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and 

r 1 "13/2 
Frw, = k3Frwm [1 + k - ~ .  ] [12b] 

where Frw. and h,,. are the Froude number ((Mw/2)/p.h.~d)2/(gh~m) and the waterfall thickness 
measured just before the brink, k, is a constant experimentally determined later, and Frw i = 
(u~lgh,,). 

3.2 The airflow 
As shown in figure 7, the air rises between the two waterfalls as if flowing in a diverging 

duct with flexible walls, but some will be brought to rest underneath the waterfalls. The 
resultant pressure difference over the water element will thus correspond to the kinetic head of 
the air between the waterfalls at position z. If the air flow is assumed to be one dimensionalt of 
local velocity ua, and if the density Pa of the air is assumed to be constant 

1 Ap -~. ~ paUa 2. [13] 

However the air velocity ua depends on the path followed by the air jet as it passes between the 
waterfalls, a complex problem in fluid mechanics. 

Three possible modes of air flow between the waterfalls are illustrated in figure 8. 
(i) In the first and most conservative case, illustrated in figure 8(a), it is assumed that the air 

follows the curvature of the waterfall, unaffected by the outlet hole of the test section, so that 
the air velocity at position (x, z) is given by 

Ma 
ua pad(b - 2x) [14] 

where Ma is the mass flow rate of air, b the breadth of the test section and d the depth or gap 
size. Thus, 

AP~'~Pa('pad(-bM~ 2X))  2 [15] 

where x is measured to the centre of the water jet (jet thickness effects will be considered 
later). 

(ii) At the opposite extreme, it is assumed that the air separates from the wall of the 
waterfalls, as it enters the water channel at its narrowest width (b -2xb), at the bottom of the 
lower plenum, with a slow moving circulation pattern between the gas jet and the waterfall 
giving an approximately uniform pressure. If it is further assumed, as in figure 8(b), that the 
width of the air jet remains constant at the bottom value of (b-2xb),  i.e. a parallel jet, it 
follows that, 

1 / Ma \2 
Ap = ~ Pa ~pad(-~- 2xb) " [161 

(iii) In the third case it is assumed that the air moves as a jet from the inlet of breadth 
(b -2xb) to the outlet hole of effective width do (i.e. replacing the outlet hole with a square of 

tNote: Three-dimensional air patterns in the tank below the test section are neglected in the analysis. 
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side do), where do = V'(d4)do, as shown in figure 8(c) so that 

Ap=~pa F _ Ma 2 [17] 

In general the dimensionless pressure difference AP defined in [9] becomes, 

AP = Fr?d (B/2- X)  2 [18] 

where B is the dimensionless breadth = (2g]ui2)b. 
Equation [18] corresponds to [15]; if X is replaced by Xb = (2glui2)Xb then the condition 

corresponding to [16] is obtained. 
If X is replaced by [((B/2) - (Do/2)) + ((Do/2 + Xb - B/2)/ZDZ], then the dimensionless form of 

[17] is obtained. (Here Do = (2gluE)do.) 

3.3 Effect of airflow on the water trajectories 
It is now possible to substitute [18] into [10] to obtain the water trajectories. For Case (i) 

with the air following the waterfall profile, an integral equation is obtained which can be 
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integrated numerically on a computer to yield dimensionless trajectories fo the form Z vs X. 
This has been done with the introduction of a further dimensionless parameter K where 

n 2 
[19] 

As K increases, so the ratio Ma/Mw increases thus, for the present experiments, trajectory 
curves for varying K values can be regarded as those relating to different upward air flow rates. 
A typical set of curves, for a water inlet velocity ui = 0.475 m/s is shown in figure 9. As might 
be expected, the horizontal travel of the water increases as the air flow increases. The 
corresponding values of the dimensionless pressure difference AP at the bottom of the test 
section, i.e. Z = Zb are also shown in figure 9. 

For Case (ii), with AP = APb, [10] can be integrated analytically to give, 

X = ~ sin -I [2(~1 ( R b Z ) ]  - $ ( g b Z )  [201 

where the function ,b is given by, 

(Rb2) = (R.2) ' /2 (1 - Rb2) 1/: [21] 
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and the ratio 

APb2 [22] 
Rb - 1 - 2APb" 

It is thus possible to evaluate another family of trajectories of X vs Z, this time with a 
parameter APb, as shown in figure 10. 

It is useful from a conceptual point of view to simplify [20] further. For the case of APb "~ ½ 
with RbZ '~  1 [20], becomes 

X = 2Z1/2(1 +~ APbZ) [23] 

a perturbation of [11]. 
Equation [23] is also plotted in figure 10 and, again, a family of trajectories is obtained with 

the horizontal travel of the water increasing as the air flow (and hence APb) increases. The 
discrepancy between the approximation to [20] by [23] is also shown. However, if the curves 
shown in figure 10 are compared with those in figure 9 the horizontal travel of the water is seen 
to be greater in the former case, as might be expected. Perhaps what is unexpected is the 
magnitude of this effect; in figure 10, a APb ~0.01 is needed for Xb ~ 12 compared with 
AP b -~ 0.04 in figure 9. Consequently, the two extreme assumptions embodied in the above 
analysis imply widely different air flow rates to give the same effect in the water trajectories. 
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For Case (iii) with 

A P =  
K 

[Do DoI2+Xb-BI2zb Z]  2 

an integral equation is obtained of the form, 

X = ~ dZ ]11: 
[ l + z  
L(l + F,) 2- 1 

where 

f f  KZ F,  = A p  d Z  = 
Do[Do Do/2 + Xb - BJ2 z ] " 
2 z~ 

[24] 

[25] 

[26] 

This equation can be evaluated in terms of elliptic functions of the first and second kind, but it 
is simpler to evaluate [25] and [26] numerically on a computer. 

These three numerical solutions are now exploited below. 

3.4 The condition for the collapse of the pair of waterfalls 
The condition for the collapse of the pair of waterfalls is similar for the three cases of air 

flow described above but can be seen most readily for the simple case of AP = APo with 
APa < ½ corresponding to [23]. At the bottom of the test section the horizontal position of the 
trajectory Xb is given by [23] with Z = Zb. 

Choosing then a value of Zb = (Zb/b)B, and remembering that for a given test section shape 
(b/Zb) is fixed, a curve of Xo/(B/2) vs K/(B/2), where K is defined by [19], can be plotted with 
B/2 as a parameter. A family of such curves is shown in figure ll(a) for values of B[2 between 
10 and 50. Each curve can be considered to represent the theoretical predictions of the 
horizontal position of the water jet at the bottom of the section for a given water flow rate (Mw 
and ui fixed) and a range of values of air flow rate Mo. For a given air flow rate Mo, two 
positions of the water jet are possible as indicated by Xb, one corresponding to a low air 
velocity and low value of Xb and the other corresponding to a high air velocity and a high value 
of Xb. Referring to figure 1 l(a) for any water-first type test, i.e. (fixed B/2), it would be expected 
that the water trajectory would move from position 1 towards position 2 as the air flow rate was 
increase, i.e. (K increased), causing the two water jets to come together. At the maximum 
(position 2) any further increase in air flow causes the water jets to collapse in towards one 
another as shown in figure 4(b). The maximum, such as that represented by position 2, 
corresponds to the maximum possible air flow and can be regarded as a kind of choked flow for 
the water jet flow pattern. 

The choked flow condition can be evaluated analytically for the simple case described by 
[23] with APb = K/(B/2 - Xb) 2. Then, since 

2 I FL ] [27] 

and if the condition dMddXo = O, or (d[(K/B/2)/d[(XdB/2)] = O, is imposed, the maximum is 
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It is also possible to plot similar curves to those shown in figure ll(a) for the cases of the 
variable Ap, using a digital computer. These are shown in figrues l l(b) and 1 l(c) and have the 
same general form. 

3.5 Choking  condi t ion  

It is worthwhile considering further the condition used above for the collapse of the pair of 
waterfalls, viz. dMaldXb  = 0. Consider the air flowing through cross section area A between the 
water jets. Then the conservation of mass gives, 

paAua = Ma = const. [30] 

and the conservation of momentum, 

- A d p  - d(pau~2A) = 0 [311 

if frictional and gravity effects for the air are neglected. As above, the variation of p~ can be 
neglected but, in the problem considered here, A varies with the pressure p as well as position 
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z. Equation [31] then becomes, 

Mo2 [ dA] 
d_.pp = paA ~ " ~  1, 

dz l_M~2[~_~]zpaA 3 

[32] 

where the denominator term 

Pa A3 " ~  z = ( M a c h  number) 2. 

Choking occurs when (dp/dz)~ oo, implying, 

[.uo A ,a J =':':= (sonic ve,ocit,2. [33] 

In this equation it is assumed that the effect of pressure on the density of the air is small 
compared with its effect on the area between the waterfalls. In [32] and [33] the Mach number 
and sonic velocity terms are equivalent to those used in gas dynamics but with the gas 
compressibility effects small compared with area change effects. 

Since Ap = Pa - P = ½ PaC~ 2, [33] can be rewritten as 

ap=-½ A 
[341 

or  

O(Ap I/ZA) = 0. 
0A [35] 

Now ApmA ~ K 112 and dA ~ -dAb. Thus [35] becomes (dKt/2/dXb)=O or (dMo/dXb)=0. 
Thus the criterion used to give the collapsing of the pair of waterfalls is equivalent to that for 
choked flow in [33]. It can be shown (Appendix 2) that the corresponding "sonic" velocity given 
by [33] is about 3 m/s, very much less than the velocity of sound in still air at the same 
temperature and pressure. This is probably due to the flexibility of the restraining water jets 
causing an area change and hence changing the OA/dp term. 

3.6 The collapse condition in terms of/* and ]* 
Equations [19] and [29] can be written in a form suitable for making comparison with the 

experimental data by noting that 

25/3 Fr-(2/3) Fr-V/3) (~.) 95/3 ¢,.-<2/3)~,.-(,/3) Zb = wi wo ; B = ~  ..w, --w~ [36] 

where 

Frwb=[Mwdb]2/ b 
L Pw _1 / g  " 

[37] 
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Thus 

[ Ma]2=~/2[Pa][(Frwb)- ( l /6 ) (b) l /2-27/6(Frwi) l /3~  
MwJ 9 LpwJ 

Alternatively this can be written in terms of j* and j* where 

j, = Mo . p i/2 /~ ~/2 
pobd [gb(pw - po)]'/: ~ (Fr°b )t/21Y~ ) 

Frob = [M° db ]2/ b 
L Pa J / g '  

and  

to give 

[38] 

[39] 

j'w---- Mw DwlI2 U'. 1/2 
p,,bd " [gb(p,, - p~)]1/2 ~" , ,  .b [40] 

),,2 ]3 
., _b _ , , 6  . ,1, ,  [i*]~r 1/212 -- 2 (Fr.d,,) . 

~ ' ° - " J -  9 (j,,Fr,,) Zb [41] 

A plot of {j*Fr~) vs (j*Fr,.) for the test section geometry is shown in figure 12.It is, of course, 
possible to transform the curves in figure 1 l(a) directly. 

In a similar manner, it is possible to transform the collapse condition shown in figures 1 l(b) 
and ll(c) using [36]-[40] to give curves of ]oFr,,i'* 1/2 vs j*Frwi. These curves are also plotted in 
figure 12. For Case (iii), a further refinement used was to take the two dimensional equivalent of 
the outlet hole to be given by 

do- - -~ / (4 t "  do, i.e. area = do 2 7 7 " 2  =~- do. 
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Figure 12. Comparison between theory and experiment---collapse condition for waterfall pair. 
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3.7 Allowance for the thickness of the waterfalls 
In the previous analysis, the effect of the thickness of the waterfall on the area available for 

the passage of air has been neglected. This is a good assumption near the top of the test section, 
but near the bottom, particularly when (Xb/B/2) > 0.9, a correction may be made. Details of this 
correction are shown in Appendix 3. The calculations described previously was carried out with 
this correction factor and the results also plotted in figure 12. 

4. COMPARISON BETWEEN THEORY AND EXPERIMENT 

4.1 Water trajectories with zero airflow 
Measurements were taken of the centre position of the water jet trajectories for zero air 

flow and various water flows and curves are shown in figure 5, as was mentioned earlier. The 
three typical curves shown relate to water inlet conditions such that the Froude number Fr~=, 
measured just before the brink, were 1.49, 1.41, 1.375 and 1.118 and the flowrate per side (i.e. 
Mw/2) were 0.275, 0.395, 0.613 and 1.12 kg/s, respectively. 

According to the above theory, the trajectory is given by [1 I] which can be rewritten as 

(2] 112 uiz 1/2 [42] X = \ g /  

or using [12a], and eliminating h~m, 

[gMwFr~m ] ~/3 ] z'/2" 
x [43] 

A value of k = 0.819 was found to fit the experimental data for all the trajectories, giving 
x = ll.6z 1/2, 10.05z ~/2 and 8.95z ~12 with x and z in ram. The agreement between theory and 
experiment is very good bearing in mind that only one adjustable parameter k was used, the 
complexity of the brink flow, and the fact that no allowance was made for drag on the walls of 
the test section. 

4.2 Condition for the collapse of the pair of waterfalls 
The experimental values of the air flow rate Ma at which the two water jets collapse towards 

one another for a given water flow are plotted on figure 6 with the corresponding values of j*, 
j* and Frwm listed in table 1. The corresponding values of Frw~ according to [12b] are also shown 
in table 1, along with the parameters _~/2-, F,,~ja and Frw~j*. These last two parameters are 
compared with the theoretical curves in figure 12. 

The first point to note from figure 12 is that the theoretical curves and a line through the 
experimental points are qualitatively of the same shape but that all the theories predict a higher 
value of air flow required for waterfall collapse. The theory predicts "* 1/2 I a Fr w~ = 0 for j*Frw, = 0 
and j*Frwi ~ 0.1; the former corresponds to the case of the waterfall thickness being infinitesi- 
mally thin for finite Frw~ and the latter to the two waterfalls meeting in the centre of the test 
section without any assistance from the air. Unfortunately, experimental values below j*Frwi = 
0.015 could not be obtained since, at these low values, the flow of air caused the sluggish 
waterfalls to part, giving a film flow as shown in figure 4(c). 

The second point to note is how small a value of "* -112 l~F, wz is required (even at the maximum) 
for the waterfall collapse. The experimental data give a maximum value of i*l~rl/2~0.007 j a = = w i  

compared with the theoretical values of (i) 0,035 for the case of the air jet following the 
contours of the waterfall, (ii) 0.016 for the case of AP = APb, a constant, and (iii) 0.008 for the 
case of the linear air jet with due allowance made for waterfall thickness. Clearly, the linear air 
jet theory gives best agreement with experiment, at least when j**Fr~ < 0.047, i.e. where the 
outlet hole size do equals the waterfall gap (b -2xb) at the bottom. For values of j*Fr~ > 0.047, 
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Table 1. Experimental values relating to the collapse condition of the pair of waterfalls water first tests 
Ma 
kg/s Jw* Ja* Frwm Frw I Frwi½ ja* Frw i jw* 

0.536 0.00756 0.0118 0.0847 1.32 2.26 0.0871 0.0267 

0.712 0.000658 0.0156 0.0042 1.28 2.24 0.0863 0.0349 

0.884 0.00409 0.0194 0.0026 1.41 2.29 0.0039 0.0444 

1.057 0.0013 0.0232 0.0008 1.35 2.27 0.0012 0.0527 

0.40 0.0073 0.0088 0.0045 1.35 2.27 0.0068 0.02 

0.702 0.0083 0.0154 0.0052 1.35 2.27 0.0078 0.035 

1.056 0.0013 0.0232 0.0808 1.35 2.27 0.0012 0.0527 

2.23 0 oo489 0 1.118 2.19 0 0.1071 

1 q3/2 
Frw| = 0.55 Frwm 1 + 0.67 Frw-i ,,,j 

i.e. high water flow rates, the theory with Ap = Ap b is closest to the experimental data, a not 
too surprising effect since the air jet will certainly separate from the waterfall and not follow 
the linear divergence to the outlet hole. The importance of the waterfall thickness is also evident in 
figure 12 when j*Frwi > 0.047. 

The air flows at these higher values of waterflow are very small, so much so that the mere 
shutting of the drain valve from the bottom tank, resulting in a small flow of displaced air, was 
enough to move point A to point B, in figure 12. The theory predicts this sensitivity in a 
satisfactory way. 

Thus it is concluded that the linear air jet theory explains the theoretical data up to the 
waterflow rates at which do = (b - 2xb) whilst beyond that the AP = APb theory gives the best 
fit. At the maximum, the theory exceeds the experiment by about 15 per cent, reasonable 
agreement when the complexity of the flow and the simplifications of the theory are considered. 
It seems likely that, in water first tests (fixed B/2) as the air flow is increased (K increased), i.e. 
along the lower position of one of the curves in figure 1 l, the possibility of jumping to the upper 
portion of the curve will increase as the maximum K value is reached. It is thus likely that the 
experimental values shown on figure 12 were not true collapse points but somewhat less than 
the maximum value. Indeed, on occasions, a fluttering of the waterfall position was noted as the 
air passed between them. 

Finally, it must be emphasized again, that the collapse condition analysed above occurs at 
air flow rates far below the bypass condition of interest in the PWR refill problem. For example, 
the maximum value of i *wrl/2= 0.007 in figure 12, is very much less than the corresponding j a A ~ w  i 

,~ "*Fr 1/2 value vf 1 ~ -,~ ~ 0.13 at j*Frwi = 0.03 found for the start of bypass and 0.3 for complete bypass 
(Simpson & Rooney 1980). 

5. CONCLUSIONS 

The theory outlined above gives a satisfactory explanation of the collapse of the pair of 
waterfalls when air flows upwards between them, bearing in mind the complexity of the flow of 
the air stream and the proximity of the walls of the test section. 
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A P P E N D I X  1 

Flow over the brink into the test section 
As the water in the inlet pipe approaches the entrance to the test section, the hydrostatic 

head has to adjust such that, after the water flows over the brink, the pressure on the underside 
of the jet becomes uniform and atmospheric. This is a complex problem which has been studied 
extensively by Civil Engineers and normally requires numerical integration of the fluid flow 
equations for the water jet. This integration has been done by Markland (1965) who studied the 
ideal problem of flow of a stream initially with uniform velocity u, over a brink. The velocity, 
pressure and energy profiles at three stations (upstream, brink and downstream) are indicated in 
figure A1. It can be seen that as the water at section 1 approaches the brink at section 2, it 
accelerates and thus, by continuity, the surface height decreases. At section 1, the velocity 
profile is flat and the pressure and surface increase linearly from top to bottom of the water jet. 
At section 2 the pressure at the bottom of the channel has dropped to atmospheric, leaving a 
pressure maximum inside the water jet, and the velocity distribution increases in a non-linear 
manner from the top to bottom although the energy distribution is still linear. At section 3, the 
velocity distribution is again flat and the pressure uniformly atmospheric. 

The effect of the hydrostatic head at section 1 therefore is to accelerate the fluid at section 
2. There is however a residual pressure potential which can accelerate the water further. 

sect io~ 11 

u, / ~7.+2ghw ~ gphw, 

section 2 2 

2 

t~ "I" 2ghw2 

section 33 

ve loc i t y  . . . . . .  i ~  
p ressure  d i s t r i bu t i ons  t h r o u g h  jet 
e n e r g y  at three sections. 

Figure AI. Representation of idealised flow over a brink. 
MF Vol. 7, No. 2--B 
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In the actual experiments the flow patterns were more complex. The water was fed to the 
side arms down a vertical pipe resulting in an undulating surface initially as shown in figure A2. 
However, the decrease in water depth (and hence the increase in Froude number) is apparent as 
the brink is approached. Because of the complexity of the real flow and the non-linear aspects 
of the above theory, a simplified analysis was made to estimate the effective water jet velocity 
just after the brink, based on the measured total mass flow Mw of the inlet water and the 
measured water depth hw2 at section 2. 

At section 2, the energy varies linearly from u2 2 to (u2 2 + 2ghw2) and the square of the velocity 
varies in a non-linear manner between these two limits. Thus the mean energy at section 2,/~2, 
is given by, 

/~2 = U2 2 -t- ghw2. 

The term u2 2 will be somewhat less than the corresponding mean velocity term ti2 2, but this will 
be taken care of in a correction factor k 2. Thus, writing an energy balance on the fluid between 
section 2 and 3 (section 3 close to 2), where the velocity u3 is assumed uniform at constant 
atmospheric pressure and channel height h~, gives 

By continuity 

/~2hw2 [k2/~22 + ghw2] = u3hw3u3 2. [Al-1] 

~2hw2=~3hw3. [A1-2] 

w 

z 

~ 6 0 -  

L~J 

~ 4 0 -  
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Figure A2. Experimental values of water depth and Froude number approaching brink of test section. 
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Thus, 

giving 

where 

/~3 2 = k2/~2 2 + gh,~ [A1-3] 

/d32= k2/~22 [1 + ~ r ~  ] 

-g~w 2 1.2 _ U22 
Fr~2= and ^ - ~ 2 "  

It is also possible to estimate the channel height h~ 3 as, 

Thus, 

hw3 = u2h..__~_ /~2hw2 hw2 
r 1 ]1/2 = r 1 ]1/2. 

li~ ka~ [1 + k__~7_~ l k [ 1 + k2_.~F_~r~j 

r 1 ]3/2 
li3 l : k,Fr~ [1 + k2--~]  Fr~3 = ghw3 

[A1-41 

[A1-5] 

[AI-6I 

[A1-7l 

Using the nomenclature of the main part of the paper, the effective ul and Fr~ just after the 
brink is given by, 

and 

~,=k[ M.I2 1 r 1 1"~ 
i_pwdh,,, J [ 1 + k-fF~. J 

r 1 
Frw, = k3Frw, [1 +F~.J 

From the experimental data, k was found subsequently to be 0.819. 

[AI-81 

[AI-9] 

APPENDIX 2 

Evaluation o[ air velocity at choking condition 
At choking 

where 

Mo =M..E_g. l 
uo=pod(b_2x)  p~d u 2 B(1-'%) 

2X~ 
~b=  B " 

[A2-1] 
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Now 

with 

hence from [A2-1] 
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K :  LM.. J FM°]:[P']Fr;: ~ from[19] 

Mw r~ Mw / 2 111'~ u, 2: ghw, Frwl = gFrw; [ ~ ]  = gFr~:l_{2-~.dj "gJ 

Ua = 

1/2 
1/2 Pa .1/2 [ - ]  F.., 

LPw J 
p,,d 

2g 1 

gFr2/3 r~ M~, 12 1] I,' B(1-111,)" 
" Lt2-~-d.dJ gJ 

[A2-2] 

[A2-3] 

Now 

giving 

and from [36] 

hence from [A2-3] 

For this work 

r M w ]  2 " 1 
Fr~ = [p~bd J g--b 

Mw ]2 = b3Frw~ 
2p~d J 4 

25/3 
Fr~'~ : ~  

[A2-4] 

r K 1,,:r 1 lp>..1,,:r gb ]1'21 1 1 
" : 2 L ~ l  L~---~JLD-;.J tF-TST.,J t ~ J "  

[A2-51 

x/(gb) = X/(9.81 x 0.69) = 2.602 m/s, 

hence 

r r l ' / 2 f  I l [  I l 
u, = 97 I_B-~J L1 ---s-~b J I.B-~J 

[A2-6] 

Pw = 1000 kg/m 3, po = 1.308 kg/m 3 Frw~ ~ 2.2 

Xb 
where r/b = B/--2" 

A typical value of B/2 during the tests was 20 and, from figure 1 l(c), this gives correspond- 
ing values of [1</(17/2)] --- 0.0085 and (Xb/(B/2)) ~ 0.84 hence ua = 97 x 0.00085 x (1/(0.16 x 20)) = 
2.8 m/s. 
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A P P E N D I X  3 

Allowance for the thickness of the waterfalls 
The waterfall thickness has two effects, (a) it increases Zb by h~+/2, (b) it decreases the air 

passage width by h" = (hJcos 0) or, in dimensionless form, by H "  = [2~hJu~] (1/cos 0). 
From [3] and [6] 

ui u ? ] p+a~,ui 

Now consider the value of Hw = H~b where z = Zb (where the correction is important) and for 
simplicity assume there that cos 0 = 1 

2g . hw+ui 2 1 
H~b = U• [2gZb + U,2] In = Fr~ (1 + Zb) ~" [A3-1] 

This correction was applied to the whole of the waterfall. 
Thus in the previous calculations Zb was replaced by Z~ and B/2 by B'/2 where 

2ghw 2 
Z'b = Zb + U? ' = Zb + Fr~, [A3-2] 

and 

B' B I 
-2- = 2 Frw~(l + Zb) 1/2" [A3-3] 

" ~ :  i ¸ •  i:: 


